科目:電子學 適用:電機所電子組

考生注意:

1.依尔的作名,只要標明題號,不必抄題。

本試題共こ頁

答案必須寫在答案卷上,否則不予計分。
限用藍、黑色筆作答;試題須隨卷繳回。

第一頁

編號:422

1. Show that for the Hartley oscillator of Fig. 1,

(a) the frequency of oscillation is given by $\omega_o = 1/\sqrt{(L_1 + L_2)C}$, and (8 points)

(b) the condition for oscillations to start is $g_{m}R > (L_{1}/L_{2})$ (7 points)

Fig. 2

2. A MOS differential pair (see Fig. 2) is operated at a total bias current of 0.8 mA, using transistors (i.e. Q_1 and Q_2 in Fig. 2) with a W/L ratio of 100, $\mu_n C_{ox} = 0.2$ mA/V², $V_A =$

20 V, and $R_D = 5 \text{ k}\Omega$. Find

(a) Overdrive voltage V_{OV} of the transistors. (4 points)

(b) Transconductance g_m of the transistors. (4 points)

(c) Output resistance r_0 of the transistors. (4 points)

(d) Differential gain A_d of the differential pair. (3 points)

3. An op amp having a single-pole roll-off at 100 Hz and a low-frequency gain of 10^5 is operated in a feedback loop with $\beta = 0.01$. What is the factor by which feedback shifts the pole? To what frequency? If β is changed to a value that results in a closed-loop gain of 1, to what frequency does the pole shift? — (10 points)

4. Plot the complete circuit of an emitter follower. Calculate its voltage gain at very low frequencies. (10 points)

國立暨南國際大學九十五學年度碩士班研究生入學考試試題

科目:電子學 適用:電機所電子組

編號:422

2.答案必須寫在答案卷上,否則不予計分

共之頁 第三頁

本 試 題

5. (a) For the circuit in Fig. 5a find the values of i_0 and the voltage gain v_0/v_1 . (4 points)

(b) For the circuit in Fig. 5b, derive the transfer function and find the dc gain and the 3-dB frequency. (6 points)

Fig. 5b

Fig. 5a

6. (a) Assuming the diodes to be ideal, sketch the transfer characteristic v_0 versus v_1 for the circuits shown in Fig. 6a. (4 points)

(b) For the circuits in Fig. 6b-6c, sketch the output for the input shown in Fig. 6d. Label the most positive and most negative output levels. Assume the diodes are ideal and CR >>T. (6 points)

Fig. 6b 7. For the common-source amplifier in Fig. 7, the transistor has $v_t = 1V$, and $k'_n W/L = 2mA/V^2$.

- (a) Find the drain current I_D and drain voltage V_D that the bias circuit establishes. (4 points)
- (b) Find g_m and r_o if VA=100V. (6 points)
- (c) Find R_{in} and v_0/v_{sig} . (6 points) 10 MO

 $R_{sig}=100 k\Omega$

Fig. 7 Fig. 8 8. The common-emitter amplifier of Fig. 8 includes an emitter degeneration resistance Re.

 $3 k\Omega$

- (a) Assuming $\alpha \sim 1$, neglecting r_x and r_0 , and assuming the current source to be ideal, derive an expression for the small-signal voltage gain $A(s)=V_o/V_{sig}$ that applies in the midband and the low frequency band. Also find the midband gain $A_{\rm M}$ and the lower 3-dB frequency $f_{\rm L}$. (12)
- (b) What is the factor that the magnitude of A_M reduced by including R_e . (2 points)